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Abstract

The aim of this work is the development of an artificial neural network model, which can be generalized and used in a
variety of applications for retention modelling in ion chromatography. Influences of eluent flow-rate and concentration of

2eluent anion (OH ) on separation of seven inorganic anions (fluoride, chloride, nitrite, sulfate, bromide, nitrate, and
phosphate) were investigated. Parallel prediction of retention times of seven inorganic anions by using one artificial neural
network was applied. MATLAB Neural Networks ToolBox was not adequate for application to retention modelling in this
particular case. Therefore the authors adopted it for retention modelling by programming in MATLAB metalanguage. The
following routines were written; the division of experimental data set on training and test set; selection of data for training
and test set; Dixon’s outlier test; retraining procedure routine; calculations of relative error. A three-layer feed forward neural
network trained with a Levenberg–Marquardt batch error back propagation algorithm has been used to model ion
chromatographic retention mechanisms. The advantage of applied batch training methodology is the significant increase in
speed of calculation of algorithms in comparison with delta rule training methodology. The technique of experimental data
selection for training set was used allowing improvement of artificial neural network prediction power. Experimental design
space was divided into 8–32 subspaces depending on number of experimental data points used for training set. The number
of hidden layer nodes, the number of iteration steps and the number of experimental data points used for training set were
optimized. This study presents the very fast (300 iteration steps) and very accurate (relative error of 0.88%) retention model,
obtained by using a small amount of experimental data (16 experimental data points in training set). This indicates that the
method of choice for retention modelling in ion chromatography is the artificial neural network.
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scribed in several books [1,2] and reviews [3–6]. IC training data with respect to the true but unknown
analysis requires selection of ion chromatographic underlying relations. The training sample must con-
parameters in order to establish acceptable selectivity tain sufficient and well-distributed training samples
and reasonable retention times of late-eluting species in order to generalize for experimental noise. Neural
as well as to establish better precision and accuracy networks are very sensitive to overtraining when
and lower detection and quantification limits. The little ill dimensioned data are used [27].
retention mechanism is controlled by several vari- In this work the artificial neural network was used
ables like stationary phase, eluent and temperature for retention modelling of anions in ion chromatog-
[7–12]. Retention models for ion chromatography raphy. The aim of this work is to determine the
were evaluated and only partial agreement was found suitable artificial neural network model, which can
between theoretical models and experimental data be generalized and used in a variety of application
[13–15]. There is still much to be investigated, the for retention modelling in ion chromatography. The
problem of the selectivity of mono- and divalent main advantage of developed ion chromatographic
anions having been neglected so far. retention model over the others is description of

The development of computer-assisted retention whole ion chromatographic system at the same time
modelling routines in chromatography can be by using one artificial neural network for modelling
achieved in a number of ways. In the last decade, of retention times of all investigated anions (fluoride,
neural networks have found widespread popularity chloride, nitrite, sulfate, bromide, nitrate, and phos-
amongst analytical chemists for solving chemical phate) in relation with all investigated ion chromato-
problems [16–19]. A lot of different artificial neural graphic conditions [eluent flow-rate and concentra-

2networks based on different concepts and aims have tion of eluent anion (OH )]. Furthermore the feed
been currently explored. For some of these neural forward neural network trained with a Levenberg–
networks, a counterpart in statistical methods exists Marquardt batch error back propagation algorithm
[20]. One of the widely used statistical techniques has been used, which ensures significant reduction of
for retention modelling involves application of ex- calculation time. The huge set of experimental data
perimental design, regression analysis and statistical points used for testing guarantee the reliability of the
testing [16,17,19,21]. However, by using the neural proposed model. The technique of experimental data
networks modelling technique more accurate reten- sampling strategy for training set was used allowing
tion models can be obtained [16,17,19]. improvement of neural network prediction power.

Most neural networks are trained by the so-called The number of nodes in the hidden layer, the number
error backpropagation rule, also known as the of iteration steps and the number of experimental
generalized Delta rule that can be considered as a data points used for training set were optimized in
gradient descent procedure, which is generalized for terms of obtaining precise and accurate retention
multiple layers [22,23]. In optimization theory, it is model with respect of minimization of unnecessary
known that the convergence of gradient descent experimentation and time needed for calculation
algorithms can be accelerated using second-order procedures.
information about the shape of the optimization
surface [24].

However, the powerful modelling capability of 2 . Methodology
neural networks causes poor models when the design
of the data is not carefully chosen. The generalizing The most common multi-layers feed forward
ability of a network model is affected by the data neural network containing one hidden layer with
used [25,26]. Especially, when few and noisy data non-linear activation nodes is briefly described. For
are used, networks are prone to overfitting. It must details on multi-layers feed forward neural network,
be stressed that this problem applies for all non- the reader is referred to comprehensive textbooks
linear methods, and needs to be prevented in prac- [28,29] covering most aspects of neural network
tice. Next, the generalizing ability of neural networks design and training which have to be considered in
strongly depends on the representativity of the practice. Multi-layer feed forward neural networks
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2are referred to as multi-purpose universal approx- F(w)5O(y 2 x W) (2)i i
iimators. This means that given sufficient number of

by means of adapting the weights. The negativehidden nodes, any function can be approximated to
gradient [negative first derivative of Eq. (2) denotedcertain degree of accuracy.
as 2=F(w)] is used as a new search direction atThe feed-forward topology of the multi-layered
position w in the weight space, as given by:neural network used in this paper is described in Fig.

1. The input of the network consists ofK input w 5w 2h=F(w) (3)t11 t t
variables. TheL hidden nodes inputs are calculated
by multiplying the input vectorx, with the K3L The step sizeh of the new direction=F(w) is
weight matrixW. The hidden nodes are activated by referred to as the learning rate and determines the
non-linear transfer functionF x ?W and multiplieds di speed of convergence. The weight adaptations are
with theL3M weight matrixV in order to obtain the performed by:
network output as presented by Eq. (1):

w 5w 1hO(y 2 x w) ? x (4)t11 t i i t i
iŷ 5F(x ?W) ?V (1)i i

The minimization of error function by means of
The transfer operatorF represents a non-linear successive weight adaptations can be considered as a

transfer function, generally the tangents hyperbolic, gradient descent procedure, using a first-order Taylor
the sigmoid function or any monotonically increasing expansion:
function. For n training patterns

F(w )5F(w 1Dw )5F(w )1 g Dw (5)t11 t t t t t[(x ,y ),(x ,y ), . . . ..,(x ,y )], the network is trained1 1 2 2 n n
2ˆby minimizing the squared errors (y 2 y ) for eachi i where the gradientg 5=F(w ) is evaluated at thet

training sample (x ,y ) for i 5 [1, . . . ,n].i i previous guessw . In the case of a convex errort
Gradient descent methods [28,29] are commonly surface, the Newton method can be applied in order

used as a neural network training method and work to decrease the number of iteration steps:
by finding a minimum for an error function as given

F(w )5F(w 1Dw )t11 t tby:
1 2 2]5F(w )1=F(w ) Dw 1 = F(w ) Dwt t t t t2

(6)

It can be shown [30,31] that theN the Newton’s
weight update can be computed by:

21w 5w 2 A g (7)t11 t t t

21where A represents the inverse Hessian
2 21[= F(w )] . The Hessian represents the matrix oft

second derivatives, as given in Eq. (8):
2

= F(w )5t

2 2 2
d d d
] ]] ]]F(w ) F(w ) . . . . . . . . . F(w )t t t2 dw dw dw dwdw 1 2 1 n1 

2 2 2
d d d
]] ] ]]F(w ) F(w ) . . . . . . . . . F(w )t t t2dw dw dw dw2 n dw 2 n 2

2 2 2Fig. 1. A three-layer feed-forward neural network. The weight d d d
]] ]] ]F(w ) F(w ) . . . . . . . . . F(w )t t tmatrix connecting the input variables to the hidden layer is 2dw dw dw dw n 1 n 2 dwndenoted byW. The weight matrix containing the output weights is

denoted byV. (8)
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Starting from a favourable position, the global ASRS-ULTRA-4 mm suppressor column, working in
minimum can be found by using significantly lower recycle mode. The sample-loop volume was 50ml.
number of iteration steps, which is major improve- The void volume of the column was 2.2 ml. The
ment to the iterative approximators of the gradient eluent flow-rate was 1.00 to 1.95 ml /min and the

2descent method. Unfortunately, the Newton method concentration of KOH (OH ) in the eluent was
requires an inverse and storage of Hessian, which 25.00 to 60.00 mM. The whole system was computer
can be quite computational, and memory consuming. controlled through PeakNet 5.1 software.
Furthermore, an additional problem will arise that The data for further evaluation were obtained by
multi-layered neural networks consist of more com- exporting the appropriate chromatograms into ASCII
plex error surfaces. The computation of (inverse) files. ASCII data files were further evaluated using
Hessian matrix can be avoided by approximation of the Microcal Origin (Microcal Software, USA) soft-
its properties, known as Gauss–Newton training. The ware package.
weights are updated as follows:

3 .2. Reagents and solutionst 211 dg dgS D] ] ]w 5w 2h ? ? ? g (9)t11 t t2 dw dw Stock solutions of fluoride (1.0000 g/ l), chloride
(1.0000 g/ l), nitrite (1.0000 g/ l), sulfate (1.0000Since the Hessian is approximated, the Gauss–
g/ l), bromide (1.0000 g/ l), nitrate (1.0000 g/ l) andNewton update is only accurate near the minimum
phosphate (1.0000 g/ l) were prepared from the air-and, moreover, is sensitive for divergence when
dried (at 1058C) salts of individual anions of ana-training is started far from the minimum. The inverse
lytical-reagent grade (Merck, Darmstadt, Germany).of approximated Hessian can be stabilized by using
An appropriate amount of individual salt wasthe Levenberg–Marquardt [32] update:
weighed into a volumetric flask (100 ml) and

t 21 dissolved with Milli-Q water. Working standard1 dg dgS D] ] ]w 5w 2h ? ? ? 1tI g (10)t11 t t solutions of fluoride (2.00 mg/ l), chloride (5.002 dw dw
mg/ l), nitrite (10.00 mg/ l), sulfate (10.00 mg/ l),

which is a combination of the known gradient bromide (20.00 mg/ l), nitrate (20.00 mg/ l), and
descent and Gauss–Newton method. The parametersphosphate (30.00 mg/ l) were prepared by measuring
h andt control the behaviour of the weights updates. the appropriate volume of stock solution of indi-
For a large value ofh andt, gradient descent training vidual anion into a 100-ml volumetric flask, which
will be performed, in contrast to Gauss–Newton was later filled to the mark with Milli-Q water.
behaviour for small values forh andt. Levenberg– Working eluent solutions were prepared on-line by
Marquardt training has been applied successfully appropriate dilution of KOH with Milli-Q water.
because the algorithm is stable and efficient. 2118 MV cm water (Millipore, Bedford, MA, USA)

was used for dilution in all cases.

3 . Experimental 3 .3. Experimental design

3 .1. Instrumentation The experimental design has been planed in order
to describe the chromatographic behaviour in a

A Dionex DX500 chromatography system (Sunny- multi-dimensional space: retention time versus eluent
2vale, CA, USA) equipped with a quartenary gradient flow-rate and concentration of OH in eluent. The

pump (GP50), an eluent generator module (EG40), a eluent flow-rate was varied in range from 1.00 to
2chromatography module (LC25) and a detector 1.95 ml /min and concentration of OH in the eluent

module (ED40) was used in all experiments. Sepa- was varied from 25.00 to 60.00 mM. One hundred
ration and suppressor columns used were a Dionex and twenty eight experimental data were obtained.
IonPac AG15 (5034 mm) guard column, an IonPac The experimental data used for the modelling pro-
AS15 (25034 mm) separation column and an cedure is presented in Table 1.
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Table 1
Experimental data set used for retention modelling procedure

2 2 2 2 22 2 2 32Eluent c(OH ) F Cl NO SO Br NO PO2 4 3 4

flow-rate in eluent (min) (min) (min) (min) (min) (min) (min)
(ml /min) (mM)

1.05 25.00 5.70 10.17 12.43 22.10 22.85 25.25 70.60
1.15 25.00 5.38 9.45 11.52 20.37 20.78 23.22 64.05
1.25 25.00 5.12 8.85 10.75 18.88 19.15 21.47 58.60
1.35 25.00 4.90 8.33 10.08 17.55 17.93 19.95 54.40
1.45 25.00 4.70 7.90 9.52 16.40 16.97 18.62 50.88
1.55 25.00 4.53 7.52 9.02 15.43 15.93 17.48 47.53
1.65 25.00 4.38 7.17 8.58 14.62 14.92 16.52 44.23
1.75 25.00 4.20 6.78 8.08 13.62 14.15 15.42 41.13
1.85 25.00 4.08 6.50 7.73 13.10 13.10 14.65 38.05
1.95 25.00 3.97 6.27 7.42 12.52 12.52 13.97 36.18
1.10 30.00 5.30 9.07 11.00 16.95 19.32 21.97 45.82
1.20 30.00 5.03 8.47 10.23 15.60 17.85 20.27 41.70
1.30 30.00 4.80 7.97 9.58 14.48 16.60 18.82 38.33
1.40 30.00 4.60 7.53 9.03 13.48 15.55 17.62 35.45
1.50 30.00 4.38 7.00 8.35 12.52 14.07 15.90 31.87
1.60 30.00 4.28 6.83 8.15 12.08 13.82 15.60 31.27
1.70 30.00 4.12 6.48 7.68 11.42 12.88 14.55 29.07
1.80 30.00 3.98 6.22 7.37 10.82 12.27 13.85 27.28
1.90 30.00 3.88 5.98 7.07 10.28 11.72 13.20 25.72
1.05 32.00 5.33 8.85 10.63 15.38 18.27 20.67 37.98
1.15 32.00 5.05 8.25 9.87 14.12 16.85 19.03 34.53
1.25 32.00 4.82 7.75 9.23 13.08 15.65 17.65 31.68
1.35 32.00 4.60 7.32 8.70 12.27 14.60 16.45 29.47
1.45 32.00 4.43 6.95 8.23 11.63 13.67 15.37 27.72
1.55 32.00 4.28 6.63 7.82 11.02 12.87 14.43 26.02
1.65 32.00 4.15 6.35 7.45 10.37 12.22 13.67 24.28
1.75 32.00 3.98 6.02 7.05 9.80 11.43 12.82 22.57
1.85 32.00 3.87 5.78 6.75 9.28 10.83 12.13 21.20
1.95 32.00 3.78 5.58 6.50 8.85 10.43 11.65 20.05
1.00 34.00 5.45 9.13 11.03 15.23 19.20 21.27 37.15
1.10 34.00 5.15 8.48 10.18 13.97 17.58 19.90 33.53
1.20 34.00 4.88 7.93 9.50 12.88 16.27 18.37 30.53
1.30 34.00 4.67 7.47 8.90 12.02 15.12 17.05 28.18
1.40 34.00 4.47 7.07 8.40 11.22 14.20 15.98 26.02
1.50 34.00 4.27 6.58 7.78 10.43 12.87 14.47 23.53
1.60 34.00 4.17 6.43 7.60 10.10 12.63 14.18 23.08
1.70 34.00 4.02 6.10 7.18 9.55 11.80 13.27 21.45
1.80 34.00 3.90 5.87 6.88 9.08 11.25 12.62 20.25
1.90 34.00 3.80 5.67 6.62 8.68 10.73 12.02 19.17
1.05 36.00 5.18 8.32 9.92 12.95 16.73 18.85 28.58
1.15 36.00 4.92 7.77 9.23 11.92 15.47 17.38 26.02
1.25 36.00 4.68 7.32 8.65 11.08 14.37 16.13 23.93
1.35 36.00 4.50 6.92 8.15 10.40 13.43 15.05 22.25
1.45 36.00 4.33 6.58 7.72 9.87 12.60 14.08 20.97
1.55 36.00 4.18 6.28 7.33 9.38 11.85 13.23 19.75
1.65 36.00 4.05 6.02 7.00 8.90 11.25 12.53 18.57
1.75 36.00 3.90 5.72 6.63 8.38 10.57 11.78 17.23
1.85 36.00 3.80 5.50 6.37 8.00 10.03 11.17 16.23
1.95 36.00 3.70 5.32 6.13 7.63 9.65 10.73 15.35
1.00 38.00 5.32 8.62 10.33 12.97 17.67 19.97 28.28
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Table 1. Continued
2 2 2 2 22 2 2 32Eluent c(OH ) F Cl NO SO Br NO PO2 4 3 4

flow-rate in eluent (min) (min) (min) (min) (min) (min) (min)
(ml /min) (mM)

1.10 38.00 5.02 8.02 9.55 11.92 16.18 18.25 25.62
1.20 38.00 4.77 7.50 8.92 11.03 15.00 16.88 23.37
1.30 38.00 4.57 7.08 8.37 10.32 13.97 15.68 21.65
1.40 38.00 4.38 6.72 7.92 9.67 13.12 14.70 20.07
1.50 38.00 4.18 6.27 7.33 9.02 11.92 13.33 18.22
1.60 38.00 4.08 6.13 7.17 8.72 11.70 13.08 17.80
1.70 38.00 3.93 5.82 6.78 8.27 10.95 12.25 16.65
1.80 38.00 3.82 5.60 6.50 7.88 10.42 11.65 15.70
1.90 38.00 3.80 5.42 6.27 7.43 9.97 11.10 14.70
1.05 40.00 5.07 7.92 9.35 11.22 15.52 17.42 22.32
1.15 40.00 4.82 7.40 8.72 10.37 14.35 16.07 20.42
1.25 40.00 4.60 6.97 8.17 9.68 13.35 14.92 18.85
1.35 40.00 4.40 6.60 7.72 9.08 12.50 13.95 17.52
1.45 40.00 4.25 6.28 7.32 8.63 11.73 13.07 16.52
1.55 40.00 4.12 6.00 6.97 8.23 11.03 12.27 15.63
1.65 40.00 3.98 5.77 6.65 7.83 10.47 11.62 14.73
1.75 40.00 3.83 5.48 6.30 7.38 9.87 10.95 13.67
1.85 40.00 3.73 5.28 6.05 7.07 9.37 10.38 12.93
1.95 40.00 3.63 5.10 5.83 6.75 9.02 9.98 12.23
1.00 42.00 5.20 8.20 9.77 11.35 16.43 18.47 22.43
1.10 42.00 4.92 7.63 9.05 10.45 15.10 16.93 20.33
1.20 42.00 4.68 7.17 8.45 9.70 14.00 15.68 18.62
1.30 42.00 4.48 6.77 7.95 9.08 13.03 14.58 17.23
1.40 42.00 4.30 6.42 7.52 8.57 12.23 13.65 16.10
1.50 42.00 4.10 6.02 6.98 7.98 11.15 12.43 14.62
1.60 42.00 4.02 5.87 6.82 7.73 10.95 12.18 14.27
1.70 42.00 3.87 5.58 6.47 7.35 10.27 11.42 13.40
1.80 42.00 3.77 5.38 6.22 7.03 9.78 10.87 12.70
1.90 42.00 3.67 5.20 5.97 6.77 9.32 10.35 12.10
1.05 44.00 4.98 7.57 8.88 9.95 14.53 16.23 18.00
1.15 44.00 4.73 7.10 8.30 9.25 13.45 15.00 16.55
1.25 44.00 4.52 6.68 7.78 8.67 12.50 13.92 15.37
1.35 44.00 4.33 6.33 7.35 8.13 11.73 13.03 14.27
1.45 44.00 4.18 6.03 6.98 7.72 11.02 12.22 13.47
1.55 44.00 4.05 5.78 6.65 7.40 10.37 11.47 12.82
1.65 44.00 3.92 5.55 6.37 7.05 9.85 10.88 12.10
1.75 44.00 3.77 5.28 6.03 6.65 9.28 10.27 11.22
1.85 44.00 3.68 5.10 5.80 6.38 8.83 9.75 10.67
1.95 44.00 3.58 4.93 5.60 6.13 8.50 9.37 10.15
1.10 46.00 4.83 7.20 8.40 9.08 13.55 15.10 15.60
1.20 46.00 4.60 6.90 8.07 8.72 13.15 14.67 15.18
1.30 46.00 4.40 6.52 7.60 8.18 12.27 13.65 14.10
1.40 46.00 4.23 6.18 7.18 7.73 11.48 12.77 13.25
1.50 46.00 4.05 5.80 6.70 7.23 10.55 11.70 12.10
1.60 46.00 3.97 5.67 6.55 7.00 10.33 11.43 11.70
1.70 46.00 3.82 5.38 6.20 6.65 9.68 10.73 11.03
1.80 46.00 3.72 5.20 5.97 6.40 9.23 10.22 10.47
1.90 46.00 3.63 5.03 5.73 6.15 8.82 9.73 10.03
1.00 50.00 5.03 7.60 8.92 9.27 14.55 15.55 16.27
1.10 50.00 4.77 7.08 8.28 8.52 13.40 14.02 14.98
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Table 1. Continued
2 2 2 2 22 2 2 32Eluent c(OH ) F Cl NO SO Br NO PO2 4 3 4

flow-rate in eluent (min) (min) (min) (min) (min) (min) (min)
(ml /min) (mM)

1.20 50.00 4.53 6.65 7.75 7.95 12.43 12.88 13.87
1.30 50.00 4.35 6.30 7.30 7.48 11.62 11.98 12.93
1.40 50.00 4.18 5.98 6.90 7.10 10.87 11.30 12.07
1.50 50.00 4.00 5.62 6.45 6.62 10.00 10.28 11.10
1.60 50.00 3.92 5.50 6.32 6.43 9.78 10.03 10.83
1.70 50.00 3.77 5.23 5.98 6.13 9.20 9.48 10.20
1.80 50.00 3.68 5.05 5.75 5.88 8.78 9.00 9.70
1.00 55.00 4.62 4.97 7.30 8.47 12.95 13.68 15.23
1.10 55.00 4.70 6.82 7.77 7.88 11.72 12.65 14.03
1.20 55.00 4.48 6.42 7.27 7.40 10.82 11.75 13.02
1.30 55.00 4.28 6.07 6.83 6.97 10.07 10.97 12.13
1.40 55.00 4.13 5.78 6.58 6.58 9.55 10.27 11.33
1.50 55.00 3.95 5.43 6.17 6.17 8.73 9.47 10.43
1.60 55.00 3.87 5.32 5.93 6.03 8.55 9.25 10.18
1.05 58.00 4.77 6.78 7.47 7.80 10.62 12.22 13.50
1.15 58.00 4.55 6.37 6.98 7.30 9.78 11.30 12.47
1.25 58.00 4.33 6.02 6.60 6.87 9.23 10.52 11.57
1.35 58.00 4.17 5.72 6.22 6.50 8.60 9.92 10.88
1.45 58.00 4.02 5.47 5.93 6.18 8.15 9.33 10.23
1.55 58.00 3.90 5.23 5.70 5.90 7.80 8.80 9.63
1.65 58.00 3.75 5.00 5.45 5.62 7.42 8.30 9.08
1.00 60.00 4.90 7.05 7.73 8.17 11.03 12.95 14.33
1.10 60.00 4.63 6.60 7.17 7.62 10.10 11.98 13.27
1.20 60.00 4.42 6.22 6.72 7.13 9.33 11.15 12.30
1.30 60.00 4.25 5.88 6.33 6.73 8.70 10.42 11.47
1.40 60.00 4.08 5.62 6.05 6.38 8.28 9.77 10.73
1.50 60.00 3.90 5.28 5.67 5.98 7.65 9.02 9.90
1.60 60.00 3.83 5.17 5.53 5.85 7.47 8.80 9.63

Dependence of retention times of analysed ions (fluoride, chloride, nitrite, sulfate, bromide, nitrate, and phosphate) on ion chromato-
graphic analysis conditions (eluent flow-rate and concentration of KOH in eluent).

It is preferable for the each experimental data retention time variance. This provides the homoge-
point to have equal influence on the neural network neous variance in the output of the network. Fig. 2
model, if one wants the training and testing set to be presents the experimental design model where 16
a representative group of data of the whole design experimental data points used for the training set of
area. For that purpose the design space was divided optimized model are marked.
into 8–32 equidistant subspaces depending on num-
ber of experimental data points used for the training 3 .4. Neural networks
set. It means that an equal number of experimental
data points lie in each subspace of the whole design The neural network used in this paper was the
area. From each subspace one experimental data three-layer feed forward backpropagation neural
point was chosen for the training set using a random network. The input layer consists of the two nodes
function (total 8–32 experimental data points). The representing eluent flow-rate and concentration of

2rest of the experimental data points (total 96–120 OH in eluent. The output layer consists of seven
experimental data points) were used for validation nodes representing the retention times of seven
procedures. The input data of retention times are inorganic anions (fluoride, chloride, nitrite, sulfate,
logarithmically (log ) transformed before model- bromide, nitrate and phosphate). That means that10

ling, because of the hetroscedastic nature of the parallel prediction of the retention times of the seven
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vector. For computation of output activities linear
transfer function was employed:

ŷ 5F(x ,W) ?V (12)i i

The Levenberg–Marquardt batch learning proce-
dures using momentum were applied, and the num-
ber of iteration steps used for training procedures
was optimized leading to the adequate description of
retention behaviour. The advantage of applied batch
training methodology is the significant increase in
speed of calculation algorithm in comparison with
the delta rule training methodology described in
other studies [16–19].

The testing procedures involve the application of
Fig. 2. Design of 128 experimental data points: concentration of Dixon’s outlier test. There are certain problems2OH in eluent vs. eluent flow-rate. Sixteen experimental data

regarding Levenberg–Marquardt training optimiza-points used for the final ANN model are marked.
tion procedures. Some values of randomly chosen
weights could cause some problems connected with
matrix inversion resulting in earlier termination ofinorganic anions by using one artificial neural net-
the training procedure. In that case the trainingwork was applied, one of the advantages of the
procedure was repeated. Dixon’s outlier test wasdeveloped retention model. The number of nodes in
used for exclusion of outliers, during the optimi-the hidden layer, the number of iteration steps and
zation process, followed by a retraining procedurethe number of experimental data points used for the
using different neural network parameters (initialtraining set need to be optimized. Therefore the
weights vector, momentum factor). The purpose ofnumber of nodes in the hidden layer was varied from
Dixon’s test is to obtain better generalization of the1 to 6, the number of iteration steps was varied form
retention mechanism. The results of the optimization100 to 1100 and the number of experimental data
procedures of the neural network are shown in Figs.points used for training set was varied from 8 to 32.
3–5.The optimal neural network model was determined

To test the predictive performance of the de-by employing the calculation of prediction quality
veloped artificial neural network retention model anwith an external test set consisting of 96–120
independent test set (96–112 experimental dataexperimental data during training. The optimization
points) was used to calculate relative error. Theof ANN shows that the small number of experimen-
following equations were used for calculations:tal data points used for the training set and the small

M Nnumber of iteration steps, will provide good accuracy ˆy 2 yu u1 ij ij
]] ]]]relative error5 OO 3100%S Dof retention model, with average relative errors M 3N ŷi51j51 ij

below 1%.
Two different transfer functions were used for the wherey represents the measured value of the neuralij

ˆretention modelling procedure with neural networks. network output (retention times of particular ion),yij

The hyperbolic tangent transfer function was used represents predicted value of neural network output,
for computation of hidden layer nodes activities: N represents the number of experimental data points

used for the test set andM represents the number of
2x Wi*12 e retraining steps. All relative errors and were calcu-

]]]]*Q x W 5 (11)s di 2x Wi lated on non-logarithmically transformed data. The*11 e
results of optimization procedures of neural network

where u represents the transfer function,x repre- are shown in Figs. 3–5.i

sents the input vector, andW represents the weight The program for neural network was made by the



ˇG. Srecnik et al. / J. Chromatogr. A 973 (2002) 47–59 55

Fig. 3. (A) Relative error against number of hidden layer nodes
Fig. 4. (A) Relative error against number of number of ex-obtained by using different number of iteration steps (NIS). (B)
perimental data points used for training set obtained by usingRelative error against number of iteration steps obtained by using
different number of hidden layer nodes (HLNs). (B) Relative errordifferent number of hidden layer nodes (HLNs).
against number of number of experimental data points used for
training set obtained by using different number of iteration steps
(NIS).authors in the MATLAB environment (MATLAB

6.0, MathWorks, Sherborn, MA, USA) by using the
MATLAB Neural Networks ToolBox. The MAT-
LAB Neural Networks ToolBox was not adequate • Selection of data for training and test set.
for application to retention modelling in this par- • Dixon’s outlier test.
ticular case. Therefore the authors adopted it for • Calculations of relative error.
retention modelling by programming in MATLAB All other MATLAB Neural Network ToolBox
metalanguage. The following routines were written: options used in the described ANN retention model
• The division of experimental data set on training were adopted for the needs of retention modelling.

and test set. The calculations were performed on an IBM compat-
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(Table 1) are shown in Figs. 3–5 and are discussed
as follows.

From Fig. 3A it can be seen that minimal relative
error of proposed neural network retention model is
obtained by using three hidden layer nodes and 300
iteration steps. Those results can be proved by
examining Fig. 3B. Fig. 3B clearly indicates that the
optimal number of hidden layer nodes is three in the
whole domain of investigated numbers of iteration
steps and the smallest relative error is obtained by
using 300 iteration steps. It is also shown that the
number of iteration steps has a low influence on
relative error, particularly in comparison with the
influence of the number of hidden layer nodes on
relative error. However, one of the important factors
which has to be considered is the reduction of
computation time. If the number of iteration steps is
higher the computation time is longer. That fact only
confirms the previous conclusion that the optimal
number of iteration steps is 300.

From Fig. 4A and B it can be seen that the number
of experimental data points used for the training set
has a significant influence on the selection of optimal
parameters (number of hidden layer nodes and
number of iteration steps) for the artificial neural
network retention model. Reducing the number of
experimental data points used for the training set is
crucial for the development of the retention model
without losing time on unnecessary experimentation.
It is also important that the small number of ex-
perimental points in training set do not decrease the
predictive ability of the retention model. For that
reason it is important to determine the optimal
number of experimental data points used for theFig. 5. (A) Relative error against number of hidden layer nodes
training set. From Fig. 4A and B it can be seen thatobtained by using different experimental data points used for

training set (SN). (B) Relative error against number of iteration relative error has higher values if a small number of
steps obtained by using different number of experimental data experimental data points are used for the training set
points used for training set (SN).

(8, 12, 16 experimental data points). When using
more experimental data points for the training set

ible personal computer equipped with an 800 MHz (16, 19, 22, 26 32 experimental data points) the
Pentium III processor, and 512 Mb RAM. relative error is smaller but nearly the same value. It

can be concluded that the optimal number of ex-
perimental data points used for the training set is 16.

From Fig. 5A it can be seen that the optimal
4 . Results and discussion number of hidden layer nodes is three when using

16, 19, 22, 26 or 32 experimental data points for the
The results of optimization procedures, using 128 training set. If 8 or 12 experimental data points are

experimental data points for the modelling procedure used for the training set the optimal number of
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hidden layer nodes is two, but the relative error in characteristic of applied method and to speed up the
that case is significantly higher than in the case of new method development by reducing unnecessary
using 16 to 32 experimental data points. experimentation.

From Fig. 5B it can be seen that the optimal
number of iteration steps is 300 when using 16, 19,
22, 26 or 32 experimental data points for the training 5 . Conclusions
set. If 8 or 12 experimental data points are used for
the training set the optimal number of iteration steps In this work, artificial neural networks were used
is 700. Relative error in that case is significantly for the retention modelling of anion separation in ion
higher than in the case of using 16 to 32 experimen- chromatography. Parallel prediction of retention
tal data points. By increasing the number of iteration times of seven inorganic anions by using one artifi-
steps over 300, relative error is slightly higher and cial neural network was applied. The MATLAB
the computation time is longer. Neural Networks ToolBox was not adequate for

The trained neural network retention model was application to retention modelling in this particular
used to predict retention times for all seven anions case. Therefore the authors adopted it for retention
(fluoride, chloride, nitrite, sulfate, bromide, nitrate, modelling by programming in MATLAB metalan-
and phosphate) at all 128 ion chromatography con- guage. The following routines were written; the

2ditions (eluent flow-rate, concentration of OH in division of experimental data set on training and test
eluent). Simulated retention times were plotted set; selection of data for training and test set;
against experimentally measured retention times Dixon’s outlier test; calculations of relative error.
(Fig. 6). It can be seen that correlation coefficient is Problems arise when validation of the predictive
in range of 0.9830 to 0.9977. From those results it ability with an external test set during training is
can be concluded that the proposed neural network applied to neural network models trained with the
retention model generalizes data well and that it can Levenberg–Marquardt batch error back propagation
be used for retention modelling. algorithm, due to the fact that weight initializations

Results shown in Table 1 indicate that the selec- yield irreproducible neural network retention models.
tivity of ion chromatographic methods strongly Every new initialisation can be regarded as a new
depends on the applied ion chromatographic con- start position for the Levenberg–Marquardt batch
ditions [eluent flow-rate, concentration of KOH error back propagation algorithm search for the

2(OH ) in eluent]. By adjusting the eluent flow-rate global minimum. Although special learning parame-
2and concentration of (OH ) in eluent it is possible to ters (e.g., momentum factor) can help to avoid local

increase selectivity. That is a crucial factor for minima, no guarantee of finding the global minimum
numerous different applications of ion chromatog- can be given. The probability of finding the global
raphy analysis, particularly for wastewater analysis minimum was enhanced by selecting various random
and the analysis of samples with great differences in start positions for the Levenberg–Marquardt batch
concentration of analyte components. The possibility error back propagation algorithm search. Conse-
of adjustment of the retention times of fluoride and quently, there is a bigger chance of avoiding the
chloride is crucial for the determination of organic local minima. Obviously, the chance of finding the
acids (acetate, formate and propionate) and the global minimum directly depends on the smoothness
possibility of adjustment of the retention times of of the error hyperplane (Figs. 3–5) and the number
nitrite and sulfate is crucial for the determination of of local minima. Validation of the predictive ability
butyrate and carbonate. By adjusting the retention with an external test set during training by means of
times of late eluting anions (phosphate and nitrate) it reinitializations and retraining the networks using
is possible to obtain shorter ion chromatographic run Dixon’s filter as a criterion, provides establishment
and speed up analysis, without decreasing the selec- of a better neural network retention model.
tivity of fast eluting anions (fluoride and chloride). In this work the number of hidden layer nodes, the
The developed artificial neural network retention number of iteration steps and the number of ex-
model enables one both to improve performance perimental data points used for training set are
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Fig. 6. Plot of experimental measured retention times versus simulated retention times using neural network model with three hidden layer
nodes trained with 300 iteration steps and 16 experimental data points: (A) fluoride, (B) chloride, (C) nitrite, (D) sulfate, (E) bromide, (F)
nitrate, (G) phosphate.
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